MATLAB CONTROL SYSTEM TOOLBOX 9 Podręcznik Użytkownika Strona 366

  • Pobierz
  • Dodaj do moich podręczników
  • Drukuj
  • Strona
    / 649
  • Spis treści
  • BOOKMARKI
  • Oceniono. / 5. Na podstawie oceny klientów
Przeglądanie stron 365
9 Design Case Studies
9-58
with and as defined on page 9-50, and in the following.
For simplicity, we have dropped the subscripts indicating the time dependence
of the state-space matrices.
Given initial conditions and , you can iterate these equations to
perform the filtering. Note that you must update both the state estimates
and error covariance matrices at each time sample.
Time-Varying Design
Although the Control System Toolbox does not offer specific commands to
perform time-varying Kalman filtering, it is easy to implement the filter
recursions in MATLAB. This section shows how to do this for the stationary
plant considered above.
First generate noisy output measurements
% Use process noise w and measurement noise v generated above
sys = ss(A,B,C,0,–1);
y = lsim(sys,u+w); % w = process noise
yv = + v; % v = measurement noise
Given the initial conditions
x
ˆ
nn 1[]
x
ˆ
nn[]
Qn[] Ewn[]wn[]
T
()=
Rn[] Evn[]vn[]
T
()=
Pnn[]Exn[] xnn[]{}xn[] xnn[]{}
T
()=
Pnn 1[]Exn[] xnn 1[]{}xn[] xnn 1[]{}
T
()=
x10
[]
P10
[]
xn.
[]
Pn.
[]
x10[]0,= P10[]BQB
T
=
Przeglądanie stron 365
1 2 ... 361 362 363 364 365 366 367 368 369 370 371 ... 648 649

Komentarze do niniejszej Instrukcji

Brak uwag