MATLAB CONTROL SYSTEM TOOLBOX 9 Podręcznik Użytkownika Strona 369

  • Pobierz
  • Dodaj do moich podręczników
  • Drukuj
  • Strona
    / 649
  • Spis treści
  • BOOKMARKI
  • Oceniono. / 5. Na podstawie oceny klientów
Przeglądanie stron 368
Kalman Filtering
9-61
The time-varying filter also estimates the covariance errcov of the estimatio n
error at each sample. Plot it to see if your filter reached steady state (as
you expect with stationary input noise).
subplot(211)
plot(t,errcov), ylabel('Error covar')
From this covariance plot, you can see that the output covariance did indeed
reach a steady state in about five samples. From then on, your time-varying
filter has t he same performance as the steady-state version.
yy
e
Przeglądanie stron 368
1 2 ... 364 365 366 367 368 369 370 371 372 373 374 ... 648 649

Komentarze do niniejszej Instrukcji

Brak uwag